Basic idea behind on How to write a program for linked list implementation of stack.
Stack Program using Linked List concept
Steps
The Code push() function must be similar to the code of inserting the node at the beginning of singly linked list.
The Code pop() function must be similar to the code of deleting the first node of singly linked list.
check if memory available, stack overflow occurs, when there is no spack left to insert data. In that case malloc() function will return NULL.
Check if stack is empty while removing the item, stack underflow will occurs when stack is empty.
C Program to implement stack using linked List
// C++ program to Implement a stack
// using singly linked list
#include <bits/stdc++.h>
using namespace std;
// creating a linked list;
class Node {
public:
int data;
Node* link;
// Constructor
Node(int n)
{
this->data = n;
this->link = NULL;
}
};
class Stack {
Node* top;
public:
Stack() { top = NULL; }
void push(int data)
{
// Create new node temp and allocate memory in heap
Node* temp = new Node(data);
// Check if stack (heap) is full.
// Then inserting an element would
// lead to stack overflow
if (!temp) {
cout << "\nStack Overflow";
exit(1);
}
// Initialize data into temp data field
temp->data = data;
// Put top pointer reference into temp link
temp->link = top;
// Make temp as top of Stack
top = temp;
}
// Utility function to check if
// the stack is empty or not
bool isEmpty()
{
// If top is NULL it means that
// there are no elements are in stack
return top == NULL;
}
// Utility function to return top element in a stack
int peek()
{
// If stack is not empty , return the top element
if (!isEmpty())
return top->data;
else
exit(1);
}
// Function to remove
// a key from given queue q
void pop()
{
Node* temp;
// Check for stack underflow
if (top == NULL) {
cout << "\nStack Underflow" << endl;
exit(1);
}
else {
// Assign top to temp
temp = top;
// Assign second node to top
top = top->link;
// This will automatically destroy
// the link between first node and second node
// Release memory of top node
// i.e delete the node
free(temp);
}
}
// Function to print all the
// elements of the stack
void display()
{
Node* temp;
// Check for stack underflow
if (top == NULL) {
cout << "\nStack Underflow";
exit(1);
}
else {
temp = top;
while (temp != NULL) {
// Print node data
cout << temp->data;
// Assign temp link to temp
temp = temp->link;
if (temp != NULL)
cout << " -> ";
}
}
}
};
// Driven Program
int main()
{
// Creating a stack
Stack s;
// Push the elements of stack
s.push(11);
s.push(22);
s.push(33);
s.push(44);
// Display stack elements
s.display();
// Print top element of stack
cout << "\nTop element is " << s.peek() << endl;
// Delete top elements of stack
s.pop();
s.pop();
// Display stack elements
s.display();
// Print top element of stack
cout << "\nTop element is " << s.peek() << endl;
return 0;
}
// C++ program to Implement a stack
// using singly linked list
#include <bits/stdc++.h>
using namespace std;
// creating a linked list;
class Node {
public:
int data;
Node* link;
// Constructor
Node(int n)
{
this->data = n;
this->link = NULL;
}
};
class Stack {
Node* top;
public:
Stack() { top = NULL; }
void push(int data)
{
// Create new node temp and allocate memory in heap
Node* temp = new Node(data);
// Check if stack (heap) is full.
// Then inserting an element would
// lead to stack overflow
if (!temp) {
cout << "\nStack Overflow";
exit(1);
}
// Initialize data into temp data field
temp->data = data;
// Put top pointer reference into temp link
temp->link = top;
// Make temp as top of Stack
top = temp;
}
// Utility function to check if
// the stack is empty or not
bool isEmpty()
{
// If top is NULL it means that
// there are no elements are in stack
return top == NULL;
}
// Utility function to return top element in a stack
int peek()
{
// If stack is not empty , return the top element
if (!isEmpty())
return top->data;
else
exit(1);
}
// Function to remove
// a key from given queue q
void pop()
{
Node* temp;
// Check for stack underflow
if (top == NULL) {
cout << "\nStack Underflow" << endl;
exit(1);
}
else {
// Assign top to temp
temp = top;
// Assign second node to top
top = top->link;
// This will automatically destroy
// the link between first node and second node
// Release memory of top node
// i.e delete the node
free(temp);
}
}
// Function to print all the
// elements of the stack
void display()
{
Node* temp;
// Check for stack underflow
if (top == NULL) {
cout << "\nStack Underflow";
exit(1);
}
else {
temp = top;
while (temp != NULL) {
// Print node data
cout << temp->data;
// Assign temp link to temp
temp = temp->link;
if (temp != NULL)
cout << " -> ";
}
}
}
};
// Driven Program
int main()
{
// Creating a stack
Stack s;
// Push the elements of stack
s.push(11);
s.push(22);
s.push(33);
s.push(44);
// Display stack elements
s.display();
// Print top element of stack
cout << "\nTop element is " << s.peek() << endl;
// Delete top elements of stack
s.pop();
s.pop();
// Display stack elements
s.display();
// Print top element of stack
cout << "\nTop element is " << s.peek() << endl;
return 0;
}
// C++ program to Implement a stack
// using singly linked list
#include <bits/stdc++.h>
using namespace std;
// creating a linked list;
class Node {
public:
int data;
Node* link;
// Constructor
Node(int n)
{
this->data = n;
this->link = NULL;
}
};
class Stack {
Node* top;
public:
Stack() { top = NULL; }
void push(int data)
{
// Create new node temp and allocate memory in heap
Node* temp = new Node(data);
// Check if stack (heap) is full.
// Then inserting an element would
// lead to stack overflow
if (!temp) {
cout << "\nStack Overflow";
exit(1);
}
// Initialize data into temp data field
temp->data = data;
// Put top pointer reference into temp link
temp->link = top;
// Make temp as top of Stack
top = temp;
}
// Utility function to check if
// the stack is empty or not
bool isEmpty()
{
// If top is NULL it means that
// there are no elements are in stack
return top == NULL;
}
// Utility function to return top element in a stack
int peek()
{
// If stack is not empty , return the top element
if (!isEmpty())
return top->data;
else
exit(1);
}
// Function to remove
// a key from given queue q
void pop()
{
Node* temp;
// Check for stack underflow
if (top == NULL) {
cout << "\nStack Underflow" << endl;
exit(1);
}
else {
// Assign top to temp
temp = top;
// Assign second node to top
top = top->link;
// This will automatically destroy
// the link between first node and second node
// Release memory of top node
// i.e delete the node
free(temp);
}
}
// Function to print all the
// elements of the stack
void display()
{
Node* temp;
// Check for stack underflow
if (top == NULL) {
cout << "\nStack Underflow";
exit(1);
}
else {
temp = top;
while (temp != NULL) {
// Print node data
cout << temp->data;
// Assign temp link to temp
temp = temp->link;
if (temp != NULL)
cout << " -> ";
}
}
}
};
// Driven Program
int main()
{
// Creating a stack
Stack s;
// Push the elements of stack
s.push(11);
s.push(22);
s.push(33);
s.push(44);
// Display stack elements
s.display();
// Print top element of stack
cout << "\nTop element is " << s.peek() << endl;
// Delete top elements of stack
s.pop();
s.pop();
// Display stack elements
s.display();
// Print top element of stack
cout << "\nTop element is " << s.peek() << endl;
return 0;
}
Java Program to implement stack using linked list concept
// Java program to Implement a stack
// using singly linked list
// import package
import static java.lang.System.exit;
// Driver code
class GFG {
public static void main(String[] args)
{
// create Object of Implementing class
StackUsingLinkedlist obj
= new StackUsingLinkedlist();
// insert Stack value
obj.push(11);
obj.push(22);
obj.push(33);
obj.push(44);
// print Stack elements
obj.display();
// print Top element of Stack
System.out.printf("\nTop element is %d\n",
obj.peek());
// Delete top element of Stack
obj.pop();
obj.pop();
// print Stack elements
obj.display();
// print Top element of Stack
System.out.printf("\nTop element is %d\n",
obj.peek());
}
}
// Create Stack Using Linked list
class StackUsingLinkedlist {
// A linked list node
private class Node {
int data; // integer data
Node link; // reference variable Node type
}
// create global top reference variable global
Node top;
// Constructor
StackUsingLinkedlist() { this.top = null; }
// Utility function to add an element x in the stack
public void push(int x) // insert at the beginning
{
// create new node temp and allocate memory
Node temp = new Node();
// check if stack (heap) is full. Then inserting an
// element would lead to stack overflow
if (temp == null) {
System.out.print("\nHeap Overflow");
return;
}
// initialize data into temp data field
temp.data = x;
// put top reference into temp link
temp.link = top;
// update top reference
top = temp;
}
// Utility function to check if the stack is empty or
// not
public boolean isEmpty() { return top == null; }
// Utility function to return top element in a stack
public int peek()
{
// check for empty stack
if (!isEmpty()) {
return top.data;
}
else {
System.out.println("Stack is empty");
return -1;
}
}
// Utility function to pop top element from the stack
public void pop() // remove at the beginning
{
// check for stack underflow
if (top == null) {
System.out.print("\nStack Underflow");
return;
}
// update the top pointer to point to the next node
top = (top).link;
}
public void display()
{
// check for stack underflow
if (top == null) {
System.out.printf("\nStack Underflow");
exit(1);
}
else {
Node temp = top;
while (temp != null) {
// print node data
System.out.print(temp.data);
// assign temp link to temp
temp = temp.link;
if(temp != null)
System.out.print(" -> ");
}
}
}
}
// Java program to Implement a stack
// using singly linked list
// import package
import static java.lang.System.exit;
// Driver code
class GFG {
public static void main(String[] args)
{
// create Object of Implementing class
StackUsingLinkedlist obj
= new StackUsingLinkedlist();
// insert Stack value
obj.push(11);
obj.push(22);
obj.push(33);
obj.push(44);
// print Stack elements
obj.display();
// print Top element of Stack
System.out.printf("\nTop element is %d\n",
obj.peek());
// Delete top element of Stack
obj.pop();
obj.pop();
// print Stack elements
obj.display();
// print Top element of Stack
System.out.printf("\nTop element is %d\n",
obj.peek());
}
}
// Create Stack Using Linked list
class StackUsingLinkedlist {
// A linked list node
private class Node {
int data; // integer data
Node link; // reference variable Node type
}
// create global top reference variable global
Node top;
// Constructor
StackUsingLinkedlist() { this.top = null; }
// Utility function to add an element x in the stack
public void push(int x) // insert at the beginning
{
// create new node temp and allocate memory
Node temp = new Node();
// check if stack (heap) is full. Then inserting an
// element would lead to stack overflow
if (temp == null) {
System.out.print("\nHeap Overflow");
return;
}
// initialize data into temp data field
temp.data = x;
// put top reference into temp link
temp.link = top;
// update top reference
top = temp;
}
// Utility function to check if the stack is empty or
// not
public boolean isEmpty() { return top == null; }
// Utility function to return top element in a stack
public int peek()
{
// check for empty stack
if (!isEmpty()) {
return top.data;
}
else {
System.out.println("Stack is empty");
return -1;
}
}
// Utility function to pop top element from the stack
public void pop() // remove at the beginning
{
// check for stack underflow
if (top == null) {
System.out.print("\nStack Underflow");
return;
}
// update the top pointer to point to the next node
top = (top).link;
}
public void display()
{
// check for stack underflow
if (top == null) {
System.out.printf("\nStack Underflow");
exit(1);
}
else {
Node temp = top;
while (temp != null) {
// print node data
System.out.print(temp.data);
// assign temp link to temp
temp = temp.link;
if(temp != null)
System.out.print(" -> ");
}
}
}
}
// Java program to Implement a stack
// using singly linked list
// import package
import static java.lang.System.exit;
// Driver code
class GFG {
public static void main(String[] args)
{
// create Object of Implementing class
StackUsingLinkedlist obj
= new StackUsingLinkedlist();
// insert Stack value
obj.push(11);
obj.push(22);
obj.push(33);
obj.push(44);
// print Stack elements
obj.display();
// print Top element of Stack
System.out.printf("\nTop element is %d\n",
obj.peek());
// Delete top element of Stack
obj.pop();
obj.pop();
// print Stack elements
obj.display();
// print Top element of Stack
System.out.printf("\nTop element is %d\n",
obj.peek());
}
}
// Create Stack Using Linked list
class StackUsingLinkedlist {
// A linked list node
private class Node {
int data; // integer data
Node link; // reference variable Node type
}
// create global top reference variable global
Node top;
// Constructor
StackUsingLinkedlist() { this.top = null; }
// Utility function to add an element x in the stack
public void push(int x) // insert at the beginning
{
// create new node temp and allocate memory
Node temp = new Node();
// check if stack (heap) is full. Then inserting an
// element would lead to stack overflow
if (temp == null) {
System.out.print("\nHeap Overflow");
return;
}
// initialize data into temp data field
temp.data = x;
// put top reference into temp link
temp.link = top;
// update top reference
top = temp;
}
// Utility function to check if the stack is empty or
// not
public boolean isEmpty() { return top == null; }
// Utility function to return top element in a stack
public int peek()
{
// check for empty stack
if (!isEmpty()) {
return top.data;
}
else {
System.out.println("Stack is empty");
return -1;
}
}
// Utility function to pop top element from the stack
public void pop() // remove at the beginning
{
// check for stack underflow
if (top == null) {
System.out.print("\nStack Underflow");
return;
}
// update the top pointer to point to the next node
top = (top).link;
}
public void display()
{
// check for stack underflow
if (top == null) {
System.out.printf("\nStack Underflow");
exit(1);
}
else {
Node temp = top;
while (temp != null) {
// print node data
System.out.print(temp.data);
// assign temp link to temp
temp = temp.link;
if(temp != null)
System.out.print(" -> ");
}
}
}
}
Python Program on stack linked list
# python3 program to Implement a stack
# using singly linked list
class Node:
# Class to create nodes of linked list
# constructor initializes node automatically
def __init__(self, data):
self.data = data
self.next = None
class Stack:
# head is default NULL
def __init__(self):
self.head = None
# Checks if stack is empty
def isempty(self):
if self.head == None:
return True
else:
return False
# Method to add data to the stack
# adds to the start of the stack
def push(self, data):
if self.head == None:
self.head = Node(data)
else:
newnode = Node(data)
newnode.next = self.head
self.head = newnode
# Remove element that is the current head (start of the stack)
def pop(self):
if self.isempty():
return None
else:
# Removes the head node and makes
# the preceding one the new head
poppednode = self.head
self.head = self.head.next
poppednode.next = None
return poppednode.data
# Returns the head node data
def peek(self):
if self.isempty():
return None
else:
return self.head.data
# Prints out the stack
def display(self):
iternode = self.head
if self.isempty():
print("Stack Underflow")
else:
while(iternode != None):
print(iternode.data, end = "")
iternode = iternode.next
if(iternode != None):
print(" -> ", end = "")
return
# Driver code
if __name__ == "__main__":
MyStack = Stack()
MyStack.push(11)
MyStack.push(22)
MyStack.push(33)
MyStack.push(44)
# Display stack elements
MyStack.display()
# Print top element of stack
print("\nTop element is ", MyStack.peek())
# Delete top elements of stack
MyStack.pop()
MyStack.pop()
# Display stack elements
MyStack.display()
# Print top element of stack
print("\nTop element is ", MyStack.peek())
# python3 program to Implement a stack
# using singly linked list
class Node:
# Class to create nodes of linked list
# constructor initializes node automatically
def __init__(self, data):
self.data = data
self.next = None
class Stack:
# head is default NULL
def __init__(self):
self.head = None
# Checks if stack is empty
def isempty(self):
if self.head == None:
return True
else:
return False
# Method to add data to the stack
# adds to the start of the stack
def push(self, data):
if self.head == None:
self.head = Node(data)
else:
newnode = Node(data)
newnode.next = self.head
self.head = newnode
# Remove element that is the current head (start of the stack)
def pop(self):
if self.isempty():
return None
else:
# Removes the head node and makes
# the preceding one the new head
poppednode = self.head
self.head = self.head.next
poppednode.next = None
return poppednode.data
# Returns the head node data
def peek(self):
if self.isempty():
return None
else:
return self.head.data
# Prints out the stack
def display(self):
iternode = self.head
if self.isempty():
print("Stack Underflow")
else:
while(iternode != None):
print(iternode.data, end = "")
iternode = iternode.next
if(iternode != None):
print(" -> ", end = "")
return
# Driver code
if __name__ == "__main__":
MyStack = Stack()
MyStack.push(11)
MyStack.push(22)
MyStack.push(33)
MyStack.push(44)
# Display stack elements
MyStack.display()
# Print top element of stack
print("\nTop element is ", MyStack.peek())
# Delete top elements of stack
MyStack.pop()
MyStack.pop()
# Display stack elements
MyStack.display()
# Print top element of stack
print("\nTop element is ", MyStack.peek())
# python3 program to Implement a stack
# using singly linked list
class Node:
# Class to create nodes of linked list
# constructor initializes node automatically
def __init__(self, data):
self.data = data
self.next = None
class Stack:
# head is default NULL
def __init__(self):
self.head = None
# Checks if stack is empty
def isempty(self):
if self.head == None:
return True
else:
return False
# Method to add data to the stack
# adds to the start of the stack
def push(self, data):
if self.head == None:
self.head = Node(data)
else:
newnode = Node(data)
newnode.next = self.head
self.head = newnode
# Remove element that is the current head (start of the stack)
def pop(self):
if self.isempty():
return None
else:
# Removes the head node and makes
# the preceding one the new head
poppednode = self.head
self.head = self.head.next
poppednode.next = None
return poppednode.data
# Returns the head node data
def peek(self):
if self.isempty():
return None
else:
return self.head.data
# Prints out the stack
def display(self):
iternode = self.head
if self.isempty():
print("Stack Underflow")
else:
while(iternode != None):
print(iternode.data, end = "")
iternode = iternode.next
if(iternode != None):
print(" -> ", end = "")
return
# Driver code
if __name__ == "__main__":
MyStack = Stack()
MyStack.push(11)
MyStack.push(22)
MyStack.push(33)
MyStack.push(44)
# Display stack elements
MyStack.display()
# Print top element of stack
print("\nTop element is ", MyStack.peek())
# Delete top elements of stack
MyStack.pop()
MyStack.pop()
# Display stack elements
MyStack.display()
# Print top element of stack
print("\nTop element is ", MyStack.peek())
Javascript stack implementation linked list
// Javascript program to Implement a stack
// using singly linked list
// import package
// A linked list node
class Node
{
constructor()
{
this.data=0;
this.link=null;
}
}
// Create Stack Using Linked list
class StackUsingLinkedlist
{
constructor()
{
this.top=null;
}
// Utility function to add an element x in the stack
push(x)
{
// create new node temp and allocate memory
let temp = new Node();
// check if stack (heap) is full. Then inserting an
// element would lead to stack overflow
if (temp == null) {
document.write("<br>Heap Overflow");
return;
}
// initialize data into temp data field
temp.data = x;
// put top reference into temp link
temp.link = this.top;
// update top reference
this.top = temp;
}
// Utility function to check if the stack is empty or not
isEmpty()
{
return this.top == null;
}
// Utility function to return top element in a stack
peek()
{
// check for empty stack
if (!this.isEmpty()) {
return this.top.data;
}
else {
document.write("Stack is empty<br>");
return -1;
}
}
// Utility function to pop top element from the stack
pop() // remove at the beginning
{
// check for stack underflow
if (this.top == null) {
document.write("<br>Stack Underflow");
return;
}
// update the top pointer to point to the next node
this.top = this.top.link;
}
display()
{
// check for stack underflow
if (this.top == null) {
document.write("<br>Stack Underflow");
}
else {
let temp = this.top;
while (temp != null) {
// print node data
document.write(temp.data+"->");
// assign temp link to temp
temp = temp.link;
}
}
}
}
// main class
// create Object of Implementing class
let obj = new StackUsingLinkedlist();
// insert Stack value
obj.push(11);
obj.push(22);
obj.push(33);
obj.push(44);
// print Stack elements
obj.display();
// print Top element of Stack
document.write("<br>Top element is ", obj.peek()+"<br>");
// Delete top element of Stack
obj.pop();
obj.pop();
// print Stack elements
obj.display();
// print Top element of Stack
document.write("<br>Top element is ", obj.peek()+"<br>");
// Javascript program to Implement a stack
// using singly linked list
// import package
// A linked list node
class Node
{
constructor()
{
this.data=0;
this.link=null;
}
}
// Create Stack Using Linked list
class StackUsingLinkedlist
{
constructor()
{
this.top=null;
}
// Utility function to add an element x in the stack
push(x)
{
// create new node temp and allocate memory
let temp = new Node();
// check if stack (heap) is full. Then inserting an
// element would lead to stack overflow
if (temp == null) {
document.write("<br>Heap Overflow");
return;
}
// initialize data into temp data field
temp.data = x;
// put top reference into temp link
temp.link = this.top;
// update top reference
this.top = temp;
}
// Utility function to check if the stack is empty or not
isEmpty()
{
return this.top == null;
}
// Utility function to return top element in a stack
peek()
{
// check for empty stack
if (!this.isEmpty()) {
return this.top.data;
}
else {
document.write("Stack is empty<br>");
return -1;
}
}
// Utility function to pop top element from the stack
pop() // remove at the beginning
{
// check for stack underflow
if (this.top == null) {
document.write("<br>Stack Underflow");
return;
}
// update the top pointer to point to the next node
this.top = this.top.link;
}
display()
{
// check for stack underflow
if (this.top == null) {
document.write("<br>Stack Underflow");
}
else {
let temp = this.top;
while (temp != null) {
// print node data
document.write(temp.data+"->");
// assign temp link to temp
temp = temp.link;
}
}
}
}
// main class
// create Object of Implementing class
let obj = new StackUsingLinkedlist();
// insert Stack value
obj.push(11);
obj.push(22);
obj.push(33);
obj.push(44);
// print Stack elements
obj.display();
// print Top element of Stack
document.write("<br>Top element is ", obj.peek()+"<br>");
// Delete top element of Stack
obj.pop();
obj.pop();
// print Stack elements
obj.display();
// print Top element of Stack
document.write("<br>Top element is ", obj.peek()+"<br>");
// Javascript program to Implement a stack
// using singly linked list
// import package
// A linked list node
class Node
{
constructor()
{
this.data=0;
this.link=null;
}
}
// Create Stack Using Linked list
class StackUsingLinkedlist
{
constructor()
{
this.top=null;
}
// Utility function to add an element x in the stack
push(x)
{
// create new node temp and allocate memory
let temp = new Node();
// check if stack (heap) is full. Then inserting an
// element would lead to stack overflow
if (temp == null) {
document.write("<br>Heap Overflow");
return;
}
// initialize data into temp data field
temp.data = x;
// put top reference into temp link
temp.link = this.top;
// update top reference
this.top = temp;
}
// Utility function to check if the stack is empty or not
isEmpty()
{
return this.top == null;
}
// Utility function to return top element in a stack
peek()
{
// check for empty stack
if (!this.isEmpty()) {
return this.top.data;
}
else {
document.write("Stack is empty<br>");
return -1;
}
}
// Utility function to pop top element from the stack
pop() // remove at the beginning
{
// check for stack underflow
if (this.top == null) {
document.write("<br>Stack Underflow");
return;
}
// update the top pointer to point to the next node
this.top = this.top.link;
}
display()
{
// check for stack underflow
if (this.top == null) {
document.write("<br>Stack Underflow");
}
else {
let temp = this.top;
while (temp != null) {
// print node data
document.write(temp.data+"->");
// assign temp link to temp
temp = temp.link;
}
}
}
}
// main class
// create Object of Implementing class
let obj = new StackUsingLinkedlist();
// insert Stack value
obj.push(11);
obj.push(22);
obj.push(33);
obj.push(44);
// print Stack elements
obj.display();
// print Top element of Stack
document.write("<br>Top element is ", obj.peek()+"<br>");
// Delete top element of Stack
obj.pop();
obj.pop();
// print Stack elements
obj.display();
// print Top element of Stack
document.write("<br>Top element is ", obj.peek()+"<br>");





